Losses#

Collection of Ivy loss functions.

ivy.binary_cross_entropy(true, pred, /, *, from_logits=False, epsilon=0.0, reduction='mean', pos_weight=None, axis=None, out=None)[source]#

Compute the binary cross entropy loss.

Parameters:
  • true (Union[Array, NativeArray]) – input array containing true labels.

  • pred (Union[Array, NativeArray]) – input array containing Predicted labels.

  • from_logits (bool, default: False) – Whether pred is expected to be a logits tensor. By default, we assume that pred encodes a probability distribution.

  • epsilon (float, default: 0.0) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is 0, no smoothing will be applied. Default: 0.

  • reduction (str, default: 'mean') – 'none': No reduction will be applied to the output. 'mean': The output will be averaged. 'sum': The output will be summed. Default: 'none'.

  • pos_weight (Optional[Union[Array, NativeArray]], default: None) – a weight for positive examples. Must be an array with length equal to the number of classes.

  • axis (Optional[int], default: None) – Axis along which to compute crossentropy.

  • out (Optional[Array], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Array

Returns:

ret – The binary cross entropy between the given distributions.

Examples

With ivy.Array input:

>>> x = ivy.array([0, 1, 0, 0])
>>> y = ivy.array([0.2, 0.8, 0.3, 0.8])
>>> z = ivy.binary_cross_entropy(x, y)
>>> print(z)
ivy.array([0.223,0.223,0.357,1.61])
>>> x = ivy.array([[0, 1, 1, 0]])
>>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]])
>>> z = ivy.binary_cross_entropy(x, y, reduction='mean')
>>> print(z)
ivy.array(7.6666193)
>>> x = ivy.array([[0, 1, 1, 0]])
>>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]])
>>> pos_weight = ivy.array([1, 2, 3, 4])
>>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True)
ivy.array([[2.67164493e+00, 4.05471958e-03, 7.32684899e-02, 5.30496836e+00]])
>>> x = ivy.array([[0, 1, 1, 0]])
>>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]])
>>> pos_weight = ivy.array([1, 2, 3, 4])
>>> z = ivy.binary_cross_entropy(x, y, pos_weight=pos_weight, from_logits=True, reduction='sum', axis=1) # noqa: E501
ivy.array([8.05393649])
>>> x = ivy.array([[0, 1, 1, 0]])
>>> y = ivy.array([[2.6, 6.2, 3.7, 5.3]])
>>> z = ivy.binary_cross_entropy(x, y, reduction='none', epsilon=0.5)
ivy.array([[11.49992943,  3.83330965,  3.83330965, 11.49992943]])
>>> x = ivy.array([[0, 1, 0, 0]])
>>> y = ivy.array([[0.6, 0.2, 0.7, 0.3]])
>>> z = ivy.binary_cross_entropy(x, y, epsilon=1e-3)
>>> print(z)
ivy.array([[0.916,1.61,1.2,0.357]])

With ivy.NativeArray input:

>>> x = ivy.native_array([0, 1, 0, 1])
>>> y = ivy.native_array([0.2, 0.7, 0.2, 0.6])
>>> z = ivy.binary_cross_entropy(x, y)
>>> print(z)
ivy.array([0.223,0.357,0.223,0.511])

With a mix of ivy.Array and ivy.NativeArray inputs:

>>> x = ivy.array([0, 0, 1, 1])
>>> y = ivy.native_array([0.1, 0.2, 0.8, 0.6])
>>> z = ivy.binary_cross_entropy(x, y)
>>> print(z)
ivy.array([0.105,0.223,0.223,0.511])

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([1, 0, 0]),b=ivy.array([0, 0, 1]))
>>> y = ivy.Container(a=ivy.array([0.6, 0.2, 0.3]),b=ivy.array([0.8, 0.2, 0.2]))
>>> z = ivy.binary_cross_entropy(x, y)
>>> print(z)
{a:ivy.array([0.511,0.223,0.357]),b:ivy.array([1.61,0.223,1.61])}

With a mix of ivy.Array and ivy.Container inputs:

>>> x = ivy.array([1 , 1, 0])
>>> y = ivy.Container(a=ivy.array([0.7, 0.8, 0.2]))
>>> z = ivy.binary_cross_entropy(x, y)
>>> print(z)
{
   a: ivy.array([0.357, 0.223, 0.223])
}

Instance Method Examples

Using ivy.Array instance method:

>>> x = ivy.array([1, 0, 0, 0])
>>> y = ivy.array([0.8, 0.2, 0.2, 0.2])
>>> z = ivy.binary_cross_entropy(x, y)
>>> print(z)
ivy.array([0.223, 0.223, 0.223, 0.223])
ivy.cross_entropy(true, pred, /, *, axis=-1, epsilon=1e-07, reduction='mean', out=None)[source]#

Compute cross-entropy between predicted and true discrete distributions.

Parameters:
  • true (Union[Array, NativeArray]) – input array containing true labels.

  • pred (Union[Array, NativeArray]) – input array containing the predicted labels.

  • axis (int, default: -1) – the axis along which to compute the cross-entropy. If axis is -1, the cross-entropy will be computed along the last dimension. Default: -1.

  • epsilon (float, default: 1e-07) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is 0, no smoothing will be applied. Default: 1e-7.

  • out (Optional[Array], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Array

Returns:

ret – The cross-entropy loss between the given distributions

Examples

>>> x = ivy.array([0, 0, 1, 0])
>>> y = ivy.array([0.25, 0.25, 0.25, 0.25])
>>> print(ivy.cross_entropy(x, y))
ivy.array(1.3862944)
>>> z = ivy.array([0.1, 0.1, 0.7, 0.1])
>>> print(ivy.cross_entropy(x, z))
ivy.array(0.35667497)
ivy.sparse_cross_entropy(true, pred, /, *, axis=-1, epsilon=1e-07, reduction='mean', out=None)[source]#

Compute sparse cross entropy between logits and labels.

Parameters:
  • true (Union[Array, NativeArray]) – input array containing the true labels as logits.

  • pred (Union[Array, NativeArray]) – input array containing the predicted labels as logits.

  • axis (int, default: -1) – the axis along which to compute the cross-entropy. If axis is -1, the cross-entropy will be computed along the last dimension. Default: -1.

  • epsilon (float, default: 1e-07) – a float in [0.0, 1.0] specifying the amount of smoothing when calculating the loss. If epsilon is 0, no smoothing will be applied. Default: 1e-7.

  • out (Optional[Array], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Array

Returns:

ret – The sparse cross-entropy loss between the given distributions

Examples

With ivy.Array input:

>> x = ivy.array([2]) >> y = ivy.array([0.1, 0.1, 0.7, 0.1]) >> print(ivy.sparse_cross_entropy(x, y)) ivy.array([0.35667494])

>>> x = ivy.array([3])
>>> y = ivy.array([0.1, 0.1, 0.7, 0.1])
>>> print(ivy.cross_entropy(x, y))
ivy.array(21.79329094)
>>> x = ivy.array([2,3])
>>> y = ivy.array([0.1, 0.1])
>>> print(ivy.cross_entropy(x, y))
ivy.array(11.512926)

With ivy.NativeArray input:

>>> x = ivy.native_array([4])
>>> y = ivy.native_array([0.1, 0.2, 0.1, 0.1, 0.5])
>>> print(ivy.sparse_cross_entropy(x, y))
ivy.array([0.693])

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([4]))
>>> y = ivy.Container(a=ivy.array([0.1, 0.2, 0.1, 0.1, 0.5]))
>>> print(ivy.sparse_cross_entropy(x, y))
{
    a: ivy.array([0.693])
}

With a mix of ivy.Array and ivy.NativeArray inputs:

>>> x = ivy.array([0])
>>> y = ivy.native_array([0.1, 0.2, 0.6, 0.1])
>>> print(ivy.sparse_cross_entropy(x,y))
ivy.array([2.3])

With a mix of ivy.Array and ivy.Container inputs:

>>> x = ivy.array([0])
>>> y = ivy.Container(a=ivy.array([0.1, 0.2, 0.6, 0.1]))
>>> print(ivy.sparse_cross_entropy(x,y))
{
    a: ivy.array([2.3])
}

Instance Method Examples

With ivy.Array input:

>>> x = ivy.array([2])
>>> y = ivy.array([0.1, 0.1, 0.7, 0.1])
>>> print(x.sparse_cross_entropy(y))
ivy.array([0.357])

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([2]))
>>> y = ivy.Container(a=ivy.array([0.1, 0.1, 0.7, 0.1]))
>>> print(x.sparse_cross_entropy(y))
{
    a: ivy.array([0.357])
}

This should have hopefully given you an overview of the losses submodule, if you have any questions, please feel free to reach out on our discord in the losses channel!