# tan#

ivy.tan(x, /, *, out=None)[source]#

Calculate an implementation-dependent approximation to the tangent, having domain `(-infinity, +infinity)` and codomain `(-infinity, +infinity)`, for each element `x_i` of the input array `x`. Each element `x_i` is assumed to be expressed in radians.

Special cases

For floating-point operands,

• If `x_i` is `NaN`, the result is `NaN`.

• If `x_i` is `+0`, the result is `+0`.

• If `x_i` is `-0`, the result is `-0`.

• If `x_i` is either `+infinity` or `-infinity`, the result is `NaN`.

Parameters:
• x (`Union`[`Array`, `NativeArray`]) – input array whose elements are expressed in radians. Should have a floating-point data type.

• out (`Optional`[`Array`]) – optional output, for writing the result to. It must have a shape that the inputs (default: `None`) broadcast to.

Return type:

`Array`

Returns:

ret – an array containing the tangent of each element in `x`. The return must have a floating-point data type determined by type-promotion.

This function conforms to the Array API Standard. This docstring is an extension of the docstring # noqa in the standard.

Both the description and the type hints above assumes an array input for simplicity, but this function is nestable, and therefore also accepts `ivy.Container` instances in place of any of the arguments.

Examples

With `ivy.Array` input:

```>>> x = ivy.array([0., 1., 2.])
>>> y = ivy.tan(x)
>>> print(y)
ivy.array([0., 1.56, -2.19])
```
```>>> x = ivy.array([0.5, -0.7, 2.4])
>>> y = ivy.zeros(3)
>>> ivy.tan(x, out=y)
>>> print(y)
ivy.array([0.546, -0.842, -0.916])
```
```>>> x = ivy.array([[1.1, 2.2, 3.3],
...                [-4.4, -5.5, -6.6]])
>>> ivy.tan(x, out=x)
>>> print(x)
ivy.array([[1.96, -1.37, 0.16],
[-3.1, 0.996, -0.328]])
```

With `ivy.Container` input:

```>>> x = ivy.Container(a=ivy.array([0., 1., 2.]), b=ivy.array([3., 4., 5.]))
>>> y = ivy.tan(x)
>>> print(y)
{
a: ivy.array([0., 1.56, -2.19]),
b: ivy.array([-0.143, 1.16, -3.38])
}
```
Array.tan(self, *, out=None)#

ivy.Array instance method variant of ivy.tan. This method simply wraps the function, and so the docstring for ivy.tan also applies to this method with minimal changes.

Parameters:
• self (`Array`) – input array whose elements are expressed in radians. Should have a floating-point data type.

• out (`Optional`[`Array`]) – optional output, for writing the result to. It must have a shape that the (default: `None`) inputs broadcast to.

Return type:

`Array`

Returns:

ret – an array containing the tangent of each element in `self`. The return must have a floating-point data type determined by type-promotion.

Examples

```>>> x = ivy.array([0., 1., 2.])
>>> y = x.tan()
>>> print(y)
ivy.array([0., 1.56, -2.19])
```
Container.tan(self, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)#

ivy.Container instance method variant of ivy.tan. This method simply wraps the function, and so the docstring for ivy.tan also applies to this method with minimal changes.

Parameters:
• self (`Container`) – input array whose elements are expressed in radians. Should have a floating-point data type.

• key_chains (`Optional`[`Union`[`List`[`str`], `Dict`[`str`, `str`]]]) – The key-chains to apply or not apply the method to. Default is `None`. (default: `None`)

• to_apply (`bool`) – If True, the method will be applied to key_chains, otherwise key_chains (default: `True`) will be skipped. Default is `True`.

• prune_unapplied (`bool`) – Whether to prune key_chains for which the function was not applied. (default: `False`) Default is `False`.

• map_sequences (`bool`) – Whether to also map method to sequences (lists, tuples). (default: `False`) Default is `False`.

• out (`Optional`[`Container`]) – optional output, for writing the result to. It must have a shape that the (default: `None`) inputs broadcast to.

Return type:

`Container`

Returns:

ret – a container containing the tangent of each element in `self`. The return must have a floating-point data type determined by type-promotion.

Examples

```>>> x = ivy.Container(a=ivy.array([0., 1., 2.]), b=ivy.array([3., 4., 5.]))
>>> y = x.tan()
>>> print(y)
{
a:ivy.array([0., 1.56, -2.19]),
b:ivy.array([-0.143, 1.16, -3.38])
}
```