stable_pow#
- ivy.stable_pow(base, exponent, /, *, min_base=None)[source]#
Raise the base by the power, with MIN_BASE added to the base when exponent > 1 for numerical stability.
- Parameters:
- Return type:
Any
- Returns:
ret – The new item following the numerically stable power.
- Array.stable_pow(self, exponent, /, *, min_base=None)#
ivy.Array instance method variant of ivy.stable_pow. This method simply wraps the function, and so the docstring for ivy.stable_pow also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array, used as the base.exponent (
Union
[Number
,Array
,NativeArray
]) – The exponent number.min_base (
Optional
[float
]) – The minimum base to use, use global ivy._MIN_BASE by default. (default:None
)
- Return type:
Array
- Returns:
ret – The new item following the numerically stable power.
- Container.stable_pow(self, exponent, /, *, min_base=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)#
ivy.Container instance method variant of ivy.stable_pow. This method simply wraps the function, and so the docstring for ivy.stable_pow also applies to this method with minimal changes.
- Parameters:
self – Container of the base.
exponent (
Union
[Number
,Array
,NativeArray
,Container
]) – Container of the exponent.min_base (
Optional
[float
]) – The minimum base to use, use global ivy._MIN_BASE by default. (default:None
)key_chains (
Optional
[Union
[List
[str
],Dict
[str
,str
]]]) – The key-chains to apply or not apply the method to. Default isNone
. (default:None
)to_apply (
bool
) – If True, the method will be applied to key_chains, otherwise (default:True
) key_chains will be skipped. Default isTrue
.prune_unapplied (
bool
) – Whether to prune key_chains for which the function was not applied. (default:False
) Default isFalse
.map_sequences (
bool
) – Whether to also map method to sequences (lists, tuples). Default is (default:False
) False.
- Return type:
Container
- Returns:
ret – A container of elements containing the new items following the numerically stable power.